Biological impacts of enhanced alkalinity in Carcinus maenas.

Gemma Cripps*, Stephen Widdicombe, John I. Spicer, Helen S. Findlay

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Further steps are needed to establish feasible alleviation strategies that are able to reduce the impacts of ocean acidification, whilst ensuring minimal biological side-effects in the process. Whilst there is a growing body of literature on the biological impacts of many other carbon dioxide reduction techniques, seemingly little is known about enhanced alkalinity. For this reason, we investigated the potential physiological impacts of using chemical sequestration as an alleviation strategy. In a controlled experiment, Carcinus maenas were acutely exposed to concentrations of Ca(OH)2 that would be required to reverse the decline in ocean surface pH and return it to pre-industrial levels. Acute exposure significantly affected all individuals' acid-base balance resulting in slight respiratory alkalosis and hyperkalemia, which was strongest in mature females. Although the trigger for both of these responses is currently unclear, this study has shown that alkalinity addition does alter acid-base balance in this comparatively robust crustacean species.
Original languageEnglish
Pages (from-to)190-198
Number of pages0
JournalMar Pollut Bull
Volume71
Issue number0
DOIs
Publication statusPublished - 15 Jun 2013

Keywords

  • Animals
  • Brachyura
  • Carbon Dioxide
  • Female
  • Hydrogen-Ion Concentration
  • Seawater
  • Water Pollutants
  • Chemical

Fingerprint

Dive into the research topics of 'Biological impacts of enhanced alkalinity in Carcinus maenas.'. Together they form a unique fingerprint.

Cite this