Abstract
There is increasing recognition of the need to identify specific sublethal effects of chemicals, such as reproductive toxicity, and specific modes of actions of the chemicals, such as interference with the endocrine system. To achieve these aims requires criteria which provide a basis to interpret study findings so as to separate these specific toxicities and modes of action from not only acute lethality per se but also from severe inanition and malaise that non-specifically compromise reproductive capacity and the response of endocrine endpoints. Mammalian toxicologists have recognized that very high dose levels are sometimes required to elicit both specific adverse effects and present the potential of non-specific "systemic toxicity". Mammalian toxicologists have developed the concept of a maximum tolerated dose (MTD) beyond which a specific toxicity or action cannot be attributed to a test substance due to the compromised state of the organism. Ecotoxicologists are now confronted by a similar challenge and must develop an analogous concept of a MTD and the respective criteria. As examples of this conundrum, we note recent developments in efforts to validate protocols for fish reproductive toxicity and endocrine screens (e.g. some chemicals originally selected as 'negatives' elicited decreases in fecundity or changes in endpoints intended to be biomarkers for endocrine modes of action). Unless analogous criteria can be developed, the potentially confounding effects of systemic toxicity may then undermine the reliable assessment of specific reproductive effects or biomarkers such as vitellogenin or spiggin. The same issue confronts other areas of aquatic toxicology (e.g., genotoxicity) and the use of aquatic animals for preclinical assessments of drugs (e.g., use of zebrafish for drug safety assessment). We propose that there are benefits to adopting the concept of an MTD for toxicology and pharmacology studies using fish and other aquatic organisms and the development of sound criteria for data interpretation when the exposure of organisms has exceeded the MTD. While the MTD approach is well established for oral, topical, inhalational or injection exposure routes in mammalian toxicology, we propose that for exposure of aquatic organisms via immersion, the term Maximum Tolerated Concentration (MTC) is more appropriate.
Original language | English |
---|---|
Pages (from-to) | 197-202 |
Number of pages | 0 |
Journal | Aquat Toxicol |
Volume | 91 |
Issue number | 3 |
DOIs | |
Publication status | Published - 19 Feb 2009 |
Keywords
- Animals
- Endocrine Disruptors
- Maximum Tolerated Dose
- Mutagenicity Tests
- Pharmacology
- Toxicology
- Water
- Zebrafish