TY - JOUR
T1 - Adsorption of surfactant-rich stickies onto mineral surfaces.
AU - Gribble, Christopher M.
AU - Matthews, G. Peter
AU - Gantenbein, Daniel
AU - Turner, Andrew
AU - Schoelkopf, Joachim
AU - Gane, Patrick A.C.
PY - 2010/12/15
Y1 - 2010/12/15
N2 - "Stickies" are tacky species, present in recycled paper and coated broke, derived from coating formulations, adhesives etc. They impact negatively on paper quality and cause web runnability problems by deposit build-up. To sustain recycling, stickies are controlled by adsorbing them onto minerals added to the recycled stock. We report isotherms for a fatty acid ester defoamer and an acrylic acid ester copolymer adsorbing from colloidal suspension onto various talcs and modified calcium carbonates. We used commercial preparations of the fatty acid ester defoamer and acrylic acid ester copolymer to provide a simple analogue to the industrial process. The modified calcium carbonates are hydrophilic with anionic and cationic sites present. Adsorption isotherms for low surface area modified calcium carbonate conform to the Langmuir model, while those for high surface area modified calcium carbonate reflect a two stage process involving the formation of a monolayer over the mineral surface and subsequent partial aggregation. Talc platelets display hydrophilic edges and hydrophobic surfaces. Adsorption onto them appears to involve three stages; specifically, a hydrophilic interaction between hydrophilic groups on the molecules and the talc edges, followed by hydrophobic interactions between the molecules and the talc surfaces, and finally by formation of multilayers.
AB - "Stickies" are tacky species, present in recycled paper and coated broke, derived from coating formulations, adhesives etc. They impact negatively on paper quality and cause web runnability problems by deposit build-up. To sustain recycling, stickies are controlled by adsorbing them onto minerals added to the recycled stock. We report isotherms for a fatty acid ester defoamer and an acrylic acid ester copolymer adsorbing from colloidal suspension onto various talcs and modified calcium carbonates. We used commercial preparations of the fatty acid ester defoamer and acrylic acid ester copolymer to provide a simple analogue to the industrial process. The modified calcium carbonates are hydrophilic with anionic and cationic sites present. Adsorption isotherms for low surface area modified calcium carbonate conform to the Langmuir model, while those for high surface area modified calcium carbonate reflect a two stage process involving the formation of a monolayer over the mineral surface and subsequent partial aggregation. Talc platelets display hydrophilic edges and hydrophobic surfaces. Adsorption onto them appears to involve three stages; specifically, a hydrophilic interaction between hydrophilic groups on the molecules and the talc edges, followed by hydrophobic interactions between the molecules and the talc surfaces, and finally by formation of multilayers.
KW - Adsorption
KW - Minerals
KW - Surface Properties
KW - Surface-Active Agents
U2 - 10.1016/j.jcis.2010.07.062
DO - 10.1016/j.jcis.2010.07.062
M3 - Article
SN - 1095-7103
VL - 352
SP - 483
EP - 490
JO - J Colloid Interface Sci
JF - J Colloid Interface Sci
IS - 2
ER -