TY - JOUR
T1 - A narrative review of the clinical application of pressure reactiviy indices in the neurocritical care unit
AU - Copplestone, Stephen
AU - Welbourne, Jessie
N1 - Publisher Copyright:
© 2018 The Neurosurgical Foundation.
PY - 2018/1/2
Y1 - 2018/1/2
N2 - Pressure reactivity indices are used in clinical research as a surrogate marker of the ability of the cerebrovasculature to maintain cerebral autoregulation. The use of pressure reactivity indices in patients with neurological injury represents a potential to move away from population-based physiological targets used in guidelines to individualized physiological targets. The aim of this review is to describe the underlying principles and development of pressure reactivity indices, alongside a critique of how they have been used in clinical research, including their limitations. The primary source literature was identified from a database search of PUBMed and OVID online using the search terms “pressure reactivity index” and “pressure reactivity indices”. The evidence base regarding pressure reactivity indices currently remains Level III. Pressure reactivity indices rely on the correlation (−1 to +1) between the arterial blood pressure and intracranial pressure, with negative values indicating intact cerebral autoregulation and positive values indicating dysfunctional cerebral autoregulation. Meaningful data is taken from summary measures and trends. The traumatic brain injury population feature most prominently in the literature. There is limited description of the potential confounding factors that may affect pressure reactivity indices, including physiological parameters and therapeutic interventions. Plotting a pressure reactivity index against a cerebral perfusion pressure can indicate an optimal cerebral perfusion pressure to individualise patient care. There is potential to over interpret optimal cerebral perfusion pressure targets when the values of pressure reactivity indices are close to zero. There is an association between pressure reactivity indices and neurological outcomes, however the use of pressure reactivity indices as a prognostication tool is to be challenged. Average values of cerebral perfusion pressure that are not close to averaged values of optimal cerebral perfusion pressure are also associated with poor outcome. Further research is required to ascertain whether targeting an optimal cerebral perfusion pressure may alter outcome.
AB - Pressure reactivity indices are used in clinical research as a surrogate marker of the ability of the cerebrovasculature to maintain cerebral autoregulation. The use of pressure reactivity indices in patients with neurological injury represents a potential to move away from population-based physiological targets used in guidelines to individualized physiological targets. The aim of this review is to describe the underlying principles and development of pressure reactivity indices, alongside a critique of how they have been used in clinical research, including their limitations. The primary source literature was identified from a database search of PUBMed and OVID online using the search terms “pressure reactivity index” and “pressure reactivity indices”. The evidence base regarding pressure reactivity indices currently remains Level III. Pressure reactivity indices rely on the correlation (−1 to +1) between the arterial blood pressure and intracranial pressure, with negative values indicating intact cerebral autoregulation and positive values indicating dysfunctional cerebral autoregulation. Meaningful data is taken from summary measures and trends. The traumatic brain injury population feature most prominently in the literature. There is limited description of the potential confounding factors that may affect pressure reactivity indices, including physiological parameters and therapeutic interventions. Plotting a pressure reactivity index against a cerebral perfusion pressure can indicate an optimal cerebral perfusion pressure to individualise patient care. There is potential to over interpret optimal cerebral perfusion pressure targets when the values of pressure reactivity indices are close to zero. There is an association between pressure reactivity indices and neurological outcomes, however the use of pressure reactivity indices as a prognostication tool is to be challenged. Average values of cerebral perfusion pressure that are not close to averaged values of optimal cerebral perfusion pressure are also associated with poor outcome. Further research is required to ascertain whether targeting an optimal cerebral perfusion pressure may alter outcome.
KW - cerebral auto regulation
KW - multimodal monitoring
KW - neurocritical care
KW - Pressure reactivity index
UR - http://www.scopus.com/inward/record.url?scp=85040970622&partnerID=8YFLogxK
U2 - 10.1080/02688697.2017.1416063
DO - 10.1080/02688697.2017.1416063
M3 - Review article
C2 - 29298527
AN - SCOPUS:85040970622
SN - 0268-8697
VL - 32
SP - 4
EP - 12
JO - British Journal of Neurosurgery
JF - British Journal of Neurosurgery
IS - 1
ER -