Abstract
An economic model has been developed which allows the spatial dependence of wave energy levelised cost of energy (LCOE) to be calculated and mapped in graphical information system (GIS) software. Calculation is performed across a domain of points which define hindcast wave data; these data are obtained from wave propagation models like Simulating WAves Nearshore (SWAN). Time series of metocean data are interpolated across a device power matrix, obtaining energy production at every location. Spatial costs are calculated using Dijkstra's algorithm, to find distances between points from which costs are inferred. These include the export cable and operations, the latter also calculated by statistically estimating weather window waiting time. A case study is presented, considering the Scottish Western Isles and using real data from a device developer. Results indicate that, for the small scale device examined, the lowest LCOE hotspots occur in the Minches. This area is relatively sheltered, showing that performance is device specific and does not always correspond to the areas of highest energy resource. Sensitivity studies are performed, examining the effects of cut-in and cut-out significant wave height on LCOE, and month on installation cost. The results show that the impact of these parameters is highly location-specific.
Original language | English |
---|---|
Pages (from-to) | 438-451 |
Number of pages | 14 |
Journal | Ocean Engineering |
DOIs | |
Publication status | Published - 1 Feb 2018 |
ASJC Scopus subject areas
- Environmental Engineering
- Ocean Engineering
Keywords
- Economic mapping
- Economic modelling
- GIS
- Levelised cost of energy
- Spatial analysis
- Wave energy